Roles of Log-concavity, Log-convexity, and Growth Order in White Noise Analysis

نویسنده

  • Nobuhiro Asai
چکیده

In this paper we will develop a systematic method to answer the questions (Q1)(Q2)(Q3)(Q4) (stated in Section 1) with complete generality. As a result, we can solve the difficulties (D1)(D2) (discussed in Section 1) without uncertainty. For these purposes we will introduce certain classes of growth functions u and apply the Legendre transform to obtain a sequence which leads to the weight sequence {α(n)} first studied by Cochran et al. [6]. The notion of (nearly) equivalent functions, (nearly) equivalent sequences and dual Legendre functions will be defined in a very natural way. An application to the growth order of holomorphic functions on Ec will also be discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-concavity, Log-convexity, and Growth Order in White Noise Analysis

Being motivated by the work of Cochran et al. on the Gel'fand triple E] (L 2) E] , we are led to nd elementary functions to replace the exponential generating functions G and G 1== for the characterization of generalized and test functions. We deene the Legendre transformù for u in C +;log and the L-function Lu when u 2 C +;log is (log, exp)-convex. We show that u is equivalent to Lu. The dual ...

متن کامل

On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers

In this paper, we discuss the properties of the hyperfibonacci numbers F [r] n and hyperlucas numbers L [r] n . We investigate the log-concavity (log-convexity) of hyperfibonacci numbers and hyperlucas numbers. For example, we prove that {F [r] n }n≥1 is log-concave. In addition, we also study the log-concavity (log-convexity) of generalized hyperfibonacci numbers and hyperlucas numbers.

متن کامل

Schur positivity and the q-log-convexity of the Narayana polynomials

We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...

متن کامل

Log-concavity and q-Log-convexity Conjectures on the Longest Increasing Subsequences of Permutations

Let Pn,k be the number of permutations π on [n] = {1, 2, . . . , n} such that the length of the longest increasing subsequences of π equals k, and let M2n,k be the number of matchings on [2n] with crossing number k. Define Pn(x) = ∑ k Pn,kx k and M2n(x) = ∑ k M2n,kx . We propose some conjectures on the log-concavity and q-log-convexity of the polynomials Pn(x) and M2n(x).

متن کامل

Log-convexity and log-concavity of hypergeometric-like functions

We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001